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1. Introduction

1.1 Motivation

The fundamental algebraic result, known as Hurwitz theorem, claims that there are only

four division algebras: R, C, H and O. Their real dimensions are 1, 2, 4 and 8 respectively.

Another known fact concerns minimal supersymmetric models. Consider the dynamical
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gauge field interacting with fermions in d dimensional space-time. Denote ∇I = ∂I + AI

the covariant derivative, FIJ = [∇I ,∇J ] the curvature, I, J = 1, . . . , d. The action

−1

4
FIJF IJ + iψ̄ΓI∇Iψ, (1.1)

can be on-shell supersymmetric only if d = 3, 4, 6 or 10. Clearly these dimensions can be

written as d = 2 + dimR A, where A is a division algebra. This is not a coincidence. These

minimal models capture the features of corresponding division algebras.

This fact is being observed since long time in various contexts [3, 7, 14, 16]. Let us

mention also that extended N = 2 and N = 4 supersymmetry in four dimensions can be

obtained by dimensional reduction of N = 1 supersymmetry from six and ten dimensions

respectively. Close relations of N = 1 and N = 2 supersymmetry in four dimensions with

complex numbers and quaternions was figured out in [29].

In the context of supersymmetric Yang-Mills models this connection was pointed out,

in particular, in [17] in the context of the Witten index calculation. It was shown that

these contributions are given by regularized volumes of certain Kähler, hyper-Kähler and

octonionic quotients.

Another interesting property of minimal supersymmetric Yang-Mills models is related

to the dimensional reduction. Namely if we compactify 2 of d dimensions in such a model,

we obtain N = 2 supersymmetric model in d − 2 dimensions. We will not consider d = 3

minimal supersymmetric model, and focus on d− 2 = 2 and 4. Also we briefly discuss the

d − 2 = 8 in the very end, section 7.2.

Common property of these theories is that they contain the topological sector [1, 4 –

6, 19, 30, 31, 33]. An essential condition which makes possible the topological twist in

eight dimensions is that the holonomy group of the manifold is Spin(7). Otherwise it

should be an eight dimensional Joyce manifolds. One can show that the path integral for

the vacuum expectation of a topological observable gets localized onto the moduli space

of so-called generalized instantons [17]. In two dimensions it is equivalent to F = 0.

To make theory reacher one can add some matter hypermultiplets. In such a way one

obtains two dimensional Bogomol’ny equations. In four dimensions the general condition

can be rewritten as self-dual equation: F = ⋆F , whereas in eight dimensions it becomes

generalized self-dual equation: FIJ = 1
2ΦIJKLFKL, where ΦIJKL is eight dimensional

Spin(7)-invariant self-dual Caley tensor.

In four dimensions N = 2 supersymmetric Yang-Mills models (which is the H-case in

our classification) was studied extensively both from mathematical (Witten approach to

Donaldson invariants) and physical (Seiberg-Witten theory for low-energy effective action)

point of view. The moduli space of H-instantons are given by finite dimensional ADHM

construction [2, 8, 10], which identify the moduli space of instantons with certain hyper-

Kähler quotient. It allows to reduce a path integral for the vacuum expectation of an

observable to a finite dimensional (and hence well-defined) integral.

It was shown by Nekrasov in [23] how to compute in this theory the partition func-

tion, which is given by the vacuum expectation of “1”. After certain deformation of the

model the partition function can be identified with the equivariant Euler characteristics
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of the instanton moduli space. A nice property of the deformed model is that this very

quantity determines the leading term of the effective low-energy action. It is given by the

F-term and is due to instanton contributions. Neither antiinstantons nor mixed instantons-

antiinstatons do not contribute to the F-term [12]. This conclusion holds both for models

with and without matter hypermultiplets.

1.2 Purpose

Since C– and O-cases stand in a line with H-case, it is natural to ask if the same is true

in two and eight dimensional theories. Otherwise if in these theories the F-term of the

effective action can be computed as the Euler characteristics of the appropriate moduli

space.

The purpose of prsent paper is to illustrate how the Nekrasov technqiue can be applied

to the two dimensions (C-case). The same line of arguments, as in the four dimensional

case allows us to conjecture the closed form of the F-term, and, in particular, of the twisted

superpotential. Through the paper we display the similarities and distinctions with the

H-case.

Obtained formulae are quite similar to those we had in the four dimensions. However,

there are some distinctions. In the C-case it is not possible to compute the weights of fixed

points using the equivariant Chern character of the Direc bundle. Also we does not meet

any analog of the Seiberg-Witten theory in two dimensions. These points are discussed in

the section 7.1.

The paper is organized as follows. In section 2 we describe the dimensional reduction

and topological twist of super Yang-Mills in four dimensions. Section 3 is devoted to some

cohomological aspects of the model. Although topics covered is these two sections are not

original, they are included in the paper for two reasons: make presentation as selfconsistent

as possible and to manifest that we follow exactly the same logic as in the four dimensional

case. Anyway it is better to have a unique convention through the paper, than to puzzle

over different ones taken from different sources.

The path integral for topological observables localizes onto the vortex moduli space,

which is described in section 4. Section 5 is devoted to the Ω-background. Finally in

section 6 we conjucture the expression for the twisted superpotential.

1.3 Notations and conventions

Following notations are used through the paper:

• The roman indices I, J, . . . run over 0, 1, 2, 3. The greek indices (dotted and undotted)

α, β, α̇, β̇, . . . run over 1, 2, this is spinor indices. The 2-dimensional Lorentz indices

are denoted by greek letters µ, ν, . . . and run over 1, 2.

• The generators of the Lorentz group are chosen as follows:

σI
αα̇ = (12,−τ1,−τ2,−τ3)αα̇, σ̄I,α̇α = (12,+τ1,+τ2,+τ3)

α̇α, (1.2)

where τi, i = 1, 2, 3 are Pauli matrices in the standard form.
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• The ’t Hooft projectors are defined as usual:

σIJ =
1

4

(
σI σ̄J − σJ σ̄I

)
, σ̄IJ =

1

4

(
σ̄IσJ − σ̄JσI

)
(1.3)

• The Grassman measure is defined in such a way that
∫

d2θ(θθ) = +1, and the same

for θ̄. The twisted Grassman measure is defined as follows: d2~θ = dθ2dθ1. It satisfies∫
d2~θ(θ1θ2) = +1.
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2. The C-model

In this section we briefly recall some key ingredients of the dimensional reduction from

four to two dimensions as well as of the topological twist of a Yang-Mills model in two

dimensions.

2.1 Four dimensional supersymmetry

We start with N = 1, d = 4 super Yang-Mills model in the Minkowskian space. Super-

symmetric action for the theory without matter is described by the gauge multiplet, which

can be arranged in a real scalar or a chiral spinor superfield:

V (x, θ, θ̄) = iθσI θ̄AI + i(θθ)θ̄ψ̄ − i(θ̄θ̄)θψ +
1

2
(θθ)(θ̄θ̄)D,

Wα(y, θ) = iψα + θαD − σIJ
α

βθβFIJ + (θθ)σI
αα̇∇I ψ̄

I .
(2.1)

In the last line all fields are functions of covariantly constant directions in the flat superspace

yI = xI + iθσI θ̄. Let ζα and ζ̄ α̇ be parameters of supersymmetry transformation. Denote

the supersymmetry operator as δ = ζαQα + ζ̄ α̇Q̄α̇ = ζQ− ζ̄Q̄. The algebra is given by

δAI = ζασI,αα̇ψ̄α̇ − ψασI,α̇αζ̄ α̇,

δψ̄α̇ = −iσ̄IJ,α̇
β̇ ζ̄ β̇FIJ − iζ̄ α̇D,

δψα = −iσIJ
α

βζβFIJ + iζαD,

δD = −ζασI
αα̇∇Iψ̄

α̇ −∇Iψ
βσI

ββ̇
ζ̄ β̇.

(2.2)

The action for the pure Yang-Mills theory can be put to the following form:

Sgauge = −1

8

(∫
d2θW αWα +

∫
d2θ̄W̄α̇W̄ α̇

)
= −1

8
FIJF IJ +

i

2
ψσI∇Iψ̄ − D2

4
. (2.3)
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We have omitted the space integral and the trace over the adjoint representation of the

gauge group Lie algebra, as well as trace normalization factors, for the sake of brevity.

Note also the we have chosen unusual normalization for the action, which differs by factor

2 against the traditional one. This is done to avoid some 2
√

2’s in relevant formulae.

If the gauge group contains an U(1) factor, we can also add the Fayet-Iliopoulos term

which can be written as follows:

SFI = −2r

∫
d2θd2θ̄V = −rD. (2.4)

To add matter one can take two hypermultiplets which can be put into scalar chiral su-

perfields Q(y, θ) and Q̃(y, θ). They are acted on by the gauge group in dual representations,

in such a way that Q̃Q be gauge invariant. The component expansion of a hypermultiplet

is the following:

Q(y, θ) = q +
√

2θµ + (θθ)f, (2.5)

where all fields are functions of yI , and the same for Q̃. The supersymmetry acts as follows:

δq =
√

2ζαµα δq̄ =
√

2ζ̄α̇µ̄α̇

δµα = i
√

2σI
αα̇ζ̄ α̇∇Iq +

√
2ζαf δµ̄α̇ = −i

√
2ζασI

αα̇∇I q̄ +
√

2ζ̄α̇f̄

δf = −i
√

2∇Iµ
ασI

αα̇ζ̄ α̇ + 2iζ̄α̇ψ̄α̇q δf̄ = i
√

2ζασI
αα̇∇I µ̄

α̇ + 2iζαψαq̄.

(2.6)

The action is given by

Smatter =
1

2

∫
d2θd2θ̄

(
Q† e2V Q + Q̃† e−2V Q̃

)

= −1

2
∇I q̄∇Iq − i

2
µσI∇I µ̄ +

i√
2
q̄ψµ − i√

2
µ̄ψ̄q +

1

2
q̄Dq +

1

2
f̄f

− 1

2
∇I

¯̃q∇I q̃ − i

2
µ̃σI∇I

¯̃µ − i√
2

¯̃qψµ̃ +
i√
2

¯̃µψ̄q̃ − 1

2
¯̃qDq̃ +

1

2
¯̃
f f̃.

(2.7)

The second (tilded) multiplet is needed only to introduce a supersymmetric mass in

four dimensions. Corresponding contribution to the action is

SMASS = ℜe

(
M

∫
d2θQ̃Q

)
= M ′S′

MASS + M ′′S′′
MASS

S′
MASS =

1

2

(
q̃f + f̃ q − µ̃µ + ¯̃qf̄ +

¯̃
f q̄ − ¯̃µµ̄

)
,

S′′
MASS =

1

2

(
q̃f + f̃ q − µ̃µ − ¯̃qf̄ − ¯̃f q̄ + ¯̃µµ̄

)
,

(2.8)

where M = M ′ − iM ′′ is the four dimensional mass, M ′ and M ′′ are supposed to be real.

2.2 Dimensional reduction and topological twist

To perform the dimensional reduction we take the target space of the four dimensional

super Yang-Mills model as a product S
2 × T2 where T2 is a small volume torus. Let the

rudimentary torus coordinates be x0 and x3, and x1 and x2 be the coordinates on S
2.

Introduce on S
2 a complex structure by identifying S

2 = C. Define

z = x1 + ix2 z̄ = x1 − ix2 (2.9)
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In the reduced theory the gauge field is the connection of a G-bundle E over S
2. Denote

this connection by A = Aµdxµ, and its curvature by Fµν = ǫµνF12, where ǫµν is the Levi-

Civita tensor in two dimensions, the orientation is such that ǫ12 = +1. The remaining part

of the four dimensional gauge field defines two scalars:

λ =
A0 − A3

2
, φ =

A0 + A3

2
. (2.10)

Dimensionally reduced theory has the usual two dimensional Lorentz symmetry

SO(2)L = U(1)L, as well as the R-symmetry, which is U(1)R. The last one acts on the

supermultiplets (2.1) as follows:

Wα(y, θ) 7→ eiϕ/2 Wα(y, e−iϕ/2 θ), V (x, θ, θ̄) 7→ V (x, e−iϕ/2 θ, eiϕ/2 θ̄). (2.11)

In components it means

Aµ 7→ Aµ, ψ 7→ eiϕ/2 ψ, D 7→ D. (2.12)

Usually the R-symmetry is broken by quantum effects. The non-invariance of the

fermion measure produces the singlet anomaly. The Atiyah-Singer index theorem claims

that this non-invariance is given by the first Chern class c1(E) = F
2π , which counts the

difference between right handed and left handed zero modes of the two dimensional Dirac

operator. When this difference is not zero, the R-symmetry group is broken to a discrete

group. However, if we add some matter it is possible to have the unbroken R-symmetry.

We will focus in that follows at this situation.

If the R-symmetry is unbroken, we can perform the topological twist by demanding

that each Lorentz rotation on angle ϕ should be accompanied by the R-transform with

parameter ϕ/2. In other words we take the diagonal subgroup of the product of the Lorentz

group and the R-symmetry group as the new Lorentz group:

U(1)′L = diag (U(1)L × U(1)R) (2.13)

Under such a transformation the components of the spinor ψ transform as follows:

ψ+ 7→ eiϕ ψ+, ψ− 7→ ψ−. (2.14)

Therefore we can write ψ+ = ψ1+iψ2 where ψµ are components of a vector. Recall that we

are in two dimensional Euclidean space and therefore do not distinguish upper and lower

indices. Another component, ψ−, is a scalar with respect to infinitesemal rotations. Note

however that the complex conjugation is equivalent to the x2-reflection. Therefore if we

write ψ− = η− iχ, then η will be a scalar, whereas χ is a pseudoscalar, which changes sign

under reflections.

We define similarly topological twist for the supercharges and parameters of the su-

persymmetry transformation:

ζ+ =
v1 + iv2

2
, Q+ = Q1 − iQ2

ζ− =
s − ip

2
, Q− = Q + iQ̃.

(2.15)
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In twisted notations we have simply δ = sQ + pQ̃ + vµQµ. The commutation rules for

twisted supersymmetry operators are

{Q, Q̃} = 0 Q2 = G(φ) Q̃2 = G(φ)

{Qµ,Qν} = 2gµνG(λ) {Q,Qµ} = −i∇µ {Q̃,Qµ} = −iǫµν∇ν ,
(2.16)

where G(α) is the gauge transformation with parameter α.

The reduced and twisted version of algebra (2.2) is given by

Qφ = 0 Q̃φ = 0 Qµφ = ψµ

Qλ = η Q̃λ = χ Qµλ = 0

QAµ = ψµ Q̃Aµ = −ǫµνψ
ν QµAν = gµνη + ǫµνχ

Qψµ = −i∇µφ Q̃ψµ = −iǫµν∇νφ Qµψν = −igµν [φ, λ] − ǫµν(iF12 + B)

Qη = i[φ, λ] Q̃η = −B Qµη = −i∇µλ

Qχ = B Q̃χ = i[φ, λ] Qµχ = −iǫµν∇νλ

QB = i[φ, χ] Q̃B = −i[φ, η] QµB = −i∇µχ + iǫµν∇νη − iǫµν [λ, ψν ].

(2.17)

where we have introduced B = −iF12−D
2 .

Note that if we get back to original set of fields, that is, plug in back D instead of

B we observe that actions of Q and Q̃ are the same, modulo the change η ↔ χ and the

supplementary Hodge transformation of all vectors: Vµ ↔ (⋆V )µ = ǫµνV
ν . Note also, the

if we define B = +iF12−D
2 then the action of Qµ gets simpler whereas the actions of Q and

Q̃ get more complicated.

To twist the supersymmetry algebra for the matter fields (2.6) we arrange the compo-

nents of Q and Q̃ to U(1)′L spinors:

x =

(
¯̃q

−q

)
, ξ =

1√
2

(
¯̃µ+

µ+

)
, ω =

1√
2

(
µ−

¯̃µ−

)
, y =

1

2

(
f
¯̃
f

)
. (2.18)

Define also two dimensional Dirac matrices γµ and the chiral matrix Γ as follows:

γ1 =

(
0 1

1 0

)
, γ2 =

(
0 −i

i 0

)
, Γ = γ1γ2 =

(
i 0

0 −i

)
. (2.19)

The spinor rotation matrix γ12 is defined as usual: γ12 = 1
4 (γ1γ2 − γ2γ1) = 1

2Γ. The

twisted superalgebra is given by

Qx = ξ Q̃x = Γξ Qµx = −γµω

Qξ = iφx Q̃ξ = −iΓφx Qµξ = γµh − i∇µx

Qω = h Q̃ω = −Γh + iΓγµ∇µx Qµω = −iγµλx

Qh = iφω Q̃h = iΓφω − iΓγµ∇µξ Qµh = iγµλξ − i∇µω + iγµηx

(2.20)
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Qx̄ = −ξ̄ Q̃x̄ = ξ̄Γ Qµx̄ = ω̄γµ

Qξ̄ = ix̄φ Q̃ξ̄ = ix̄φΓ Qµξ̄ = h̄γµ + i∇µx̄

Qω̄ = h̄ Q̃ω̄ = h̄Γ + i∇µx̄γµΓ Qµω̄ = −ix̄λγµ

Qh̄ = −iω̄φ Q̃h̄ = iω̄φΓ + i∇µξ̄γµΓ Qµh̄ = −iξ̄γµλ − i∇µω̄ + ix̄ηγµ,

(2.21)

where h = y + i
2γµ∇µx and h̄ = ȳ − i

2∇µx̄γµ. Note that this substitution simplifies the Q
and Q̃ actions. Had we put h = y − i

2γµ∇µx and h̄ = ȳ + i
2∇µx̄γµ the action of Qµ would

become simpler instead.

2.3 Twisted superfield and twisted superpotential

The Fayet-Iliopoulos term (2.4) can appear in the model if the gauge group contains an

U(1)-factor. Let in that follows G = U(N). In two dimensions one can introduce such term

with the help of the superfield V (x, θ). However, it is not gauge invariant. Another way to

do it is to introduce so-called twisted superfield (see [32] and references therein). Note that

the meaning of the word “twisted” in this context has nothing to do with the topological

twist. The twisted superfield can be defined as follows. We consider the abelian case. Let

Dα and D̄α̇ be covariant superderivatives which commute with supercharges. Define

Σ =
i

2
D−D̄−V = φ + θ+ψ̄+ + θ̄+ψ+ + θ+θ̄+(−F12 − iD)

= φ + θµψµ + θ1θ2
iF12 − D

2
= φ + θµψµ + θ1θ2(iF12 + B),

(2.22)

where we have introduced the topological twist for the spinor supercoordinates θ+ = θ1+iθ2

2 .

All fields are supposed to be functions of yµ defined by

y1 + iy2 = z − 2iθ+θ̄− y1 − iy2 = z̄ − 2iθ̄+θ−. (2.23)

Note that the twisted superfield is the C-analog of the four dimensional N = 2 chiral

multiplet Ψ(y, θ). Recall that its superspace expansion in four dimensional twisted super-

coordinates θI is the following:

Ψ(y, θ) = φ(y) + θIψI(y) + θIθJ(iFIJ (y) − DIJ(y))+ + . . . , (2.24)

where DIJ = Dη3
IJ + fη+

IJ + f †η−IJ , ηi
IJ are ’t Hooft symbols, η± = η1±iη2

2 , D and f are

the auxiliary fields for N = 1 gauge and chiral multiplets in four dimensions, and (. . . )+

means the self-dual part. It would be interesting to see if this four dimensional superfield

can be obtained as a sort of “twisted” N = 1, d = 6 vector multiplet.

Introduce the complex parameter

τ = ir +
Θ

2π
. (2.25)

Its four dimensional analog is τ4 = Θ
2π + 4πi

g2 . The analog of r is, therefore, 4π
g2 . It follows that

weak interacting regime in the H-case corresponds to r → ∞ regime in the C-case. Define

also the twisted Grassman measure d2~θ = dθ2dθ1. Then the two-dimensional F-term (2.26)

– 8 –
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produces the Fayet-Iliopoulos term (2.4) together with topological action (3.10) which will

be discussed later in section 3.2.

2ℑm

(
τ

∫
d2~θΣ

)
= Stop + SFI . (2.26)

Let us make a remark. In Euclidean space the complex conjugation raises and lowers

indices. Thus it corresponds to the exchange ψ+ ↔ ψ−. It follows that the complex

conjugated twisted multiplet looks like

Σ̄ =
i

2
D+D̄+V = λ + θ−ψ̄− + θ̄−ψ− + θ−θ̄−(F12 − iD)

= λ + θη + θ̃χ + θθ̃
iF12 + D

2
,

(2.27)

where θ− = θ−iθ̃
2 , and all component fields are functions of y1 + iy2 = z + 2iθ+θ̄− and

y1 − iy2 = z̄ + 2iθ̄+θ−. Note also that the abelian version of the action (2.3) reduced to

two dimensions can be written in two dimensions as D-term:

Sgauge =

∫
d2θd2θ̄Σ̄Σ. (2.28)

In quantum theory the F-term gains corrections, perturbative and non-perturbative.

If the supersymmetry remains unbroken in the quantum level, the most general form of

the F-term is given by generalization of (2.26):

2ℑm

(∫
d2yd2~θ

1

2πi
W0(Σ, τ)

)
, (2.29)

where W0(Σ, τ) is the twisted superpotential. In the microscopic theory it is linear function

of Σ:

W class
0 (Σ, τ) = πiτ TrΣ. (2.30)

The perturbative corrections to the twisted superpotential can be interpreted as the

renormalization group flow for the complex parameter (2.25). Typically it has the fol-

lowing form (we have 1
πi factor instead of traditional 1

2πi since we have chosen non-usual

normalization in the action (2.3)):

τ(Λ1) = τ(Λ2) +
β

πi
ln

Λ1

Λ2
, (2.31)

where Λ is the dynamically generated scale. β is first term of the β-function expansion.

For U(N) theory with NF matter multiplets in the fundamental representation and NF̃ in

the antifundamental we have β = NF̃ − NF [32]. The R-symmetry is broken down to a

discrete group: U(1)R 7→ Z/βZ. The only case when it survives is β = 0, which is possible

if NF = NF̃ . The theory we are interested in is, therefore, conformal at the quantum level.

The rest of the paper is devoted to the explicit computations of the quantum corrections

to the twisted superpotential for this case.
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3. CohFT features of the model

3.1 Action is Q-exact

Topologically twisted theory possess two scalar fermionic operators: Q and Q̃. Strictly

speaking the last operator is pseudoscalar, but this difference is not essential. The action

is supersymmetric, that is, in particular, Q and Q̃ closed. Therefore it has good chances

to be Q and Q̃ exact. Indeed, the computation shows that:

Sgauge = QΨgauge, SFI = QΨFI , Smatter = QΨmatter

Ψgauge = Q̃Vgauge, ΨFI = Q̃VFI , Ψmatter = Q̃Vmatter,
(3.1)

where

Ψgauge = −iχ(F12 − iB) − iλ∇µψµ − iη[φ, λ] Vgauge = −iλF12 + ηχ

ΨFI = 2rχ VFI = 2rλ

Ψmatter = i(ξ̄λx + x̄λξ) − 2ix̄γ12χx Vmatter = −2ix̄λγ12x − ω̄Γω

+ (h̄ + i∇µx̄γµ)ω + ω̄(h − iγµ∇µx)

(3.2)

Therefore the action can be written as follows:

S = Sgauge + SFI + Smatter = QQ̃ (Vgauge + VFI + Vmatter) , (3.3)

which shows that we deal with NT = 2 cohomological theory (recall that both supercharges

anticommute). This is not true for the four dimensional mass term (2.8). Instead we have:

S′
MASS = QΨ′

MASS = Q̃Ψ′′
MASS

S′′
MASS = −QΨ′′

MASS = Q̃Ψ′
MASS

Qµ (x̄γνx) = igµνΨ′′
MASS + iǫµνΨ′

MASS.

(3.4)

Therefore this term is Q and Qµ or Q̃ and Qµ exact, but never both. Since x̄γµx is gauge

invariant we conclude using (2.16) that QµΨ′
MASS = QµΨ′′

MASS = 0.

Moreover it is straightforward to check that

Vmatter =
1

4
Qµ (x̄Γγµω + ω̄Γγµx) . (3.5)

It follows that QµVmatter = 0 and therefore

QµΨmatter = {Qµ, Q̃}Vmatter = −iǫµν∂νVmatter. (3.6)

Since QµVFI = 0, the same is true for the Fayet-Iliopoulos term:

QµΨFI = −iǫµν∂νVFI . (3.7)

Finally one can check that

Ψ′
gauge = Ψgauge + i∂µ(λψµ) = −1

2
Qµ (χǫµνψν + ηψµ) (3.8)

It follows that

QµΨ′
gauge = 0 QµΨgauge = −i∂ρQµ(λψρ) = iǫµρ∂

ρ (λ(iF12 + B)) . (3.9)
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3.2 Gauge fixing

As probably all theories, whose action is Q-exact for a fermionic scalar operator Q, the

model in question can be obtained by the gauge fixing for an appropriate action. Recall

how it works [4].

Consider the following “topological” action:

Stop = Θc1(E) =
Θ

2π
F12, (3.10)

where Θ is the two dimensional instanton angle. For this action to be non zero it is

necessary to have at least one generator with non vanishing trace in the gauge group Lie

algebra. In other words, the gauge group has to contain at least one U(1) factor. In such

a situation the Fayet-Iliopoulos term (2.4) is always acceptable. To be specific, in that

follows we consider the model for G = U(N).

The topological action equals Θk, where k is the winding number for the gauge field

configuration. Therefore it is invariant not only with respect to usual gauge transformations

of the connection Aµ 7→ Aµ − ∇µα, but also under small generic deformations: Aµ 7→
Aµ + αµ, provided Aµ and Aµ + αµ belong to the same homotopic class.

To fix both gauge invariances we have to introduce a BRST (BV) operator Q as well as

a set of ghosts, antighosts and gauge fixing conditions. Denote the small deformation ghost

by ψµ, the Lagrange multiplier by B and the antighost by χ. Then the BRST operator

acts as follows:

QAµ = ψµ, Qχ = B. (3.11)

Let the gauge fermion be Ψ = −iχF12. It produces term −iBF12 in the action, and

therefore the gauge fixing condition is F12 = 0, the flat connection. Consider the kinetic

term for ghosts:

1

2
ǫµν (∇µψν −∇νψµ) . (3.12)

It has following symmetry: ψµ 7→ ψµ−∇µζ, where ζ is a fermionic gauge parameter.Indeed,

the variation of the kinetic term is given by F12ζ = 0 thanks to the gauge fixing condition

for the connection. Therefore there is another gauge symmetry to be fixed. Denote corre-

sponding ghost by φ, the antighost by λ and the Lagrange multiplier by η. The extended

action of the BRST operator is given precisely by the first column of (2.17). Note also that

if we choose the gauge fixing condition for ψµ as ∇µψµ = 0, then the gauge fermion will be

Ψ = −iχF12 + λ∇µψµ, which is up to a potential −χB − iη[φ, λ] match with (3.8). This

potential does not affect on the singularities structure of the action [30], and we conclude

that this gauge fixed action is equivalent to the action of our model.

The BRST operator introduced in this way is not nilpotent. Instead, as we see in (2.16),

it satisfies Q2 = G(φ). To get really nilpotent operator we have to fix the rest of the gauge

freedom. To this extent we introduce the ghost c, antighost c̄ and the Lagrange multiplier

– 11 –
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b. The full BRST operator acts as follows:

QAµ = ψµ − i∇µc Qψµ = −i∇µφ + i{c, ψµ}

Qφ = i{c, φ} Qc =
i

2
{c, c} − φ

Qc̄ = b Qb = 0

Qχ = B + i{c, η} QB = i[φ, χ] + i[c,B]

Qλ = η + i[c, λ] Qη = i[φ, λ] + i{c, η}.

(3.13)

It is straightforward to check that it is nilpotent.

Let us also describe the mass for the matter multiplet. As we have seen, the four

dimensional mass term (2.8) is Q-exact, and hence appears as the deformation of the

gauge fermion. Two theories (with and without this term) are equivalent. Another way to

introduce the mass consists of a deformation of the BRST operator. The action remains

BRST-exact, but the BRST operator itself is deformed. The simplest way to produce the

mass is to perform the formal shift:

φ 7→ φ + m λ 7→ λ + m, (3.14)

where m is the mass. The action gains the following contribution:

Smass = −2m2x̄x − 2mx̄φx − 2mx̄λx − 2imξ̄ξ − 2imω̄ω. (3.15)

The BRST algebra for the gauge multiplet remain unchanged, but gets deformed for the

matter fields:
Qmx = ξ Qm = −ξ̄

Qmξ = iφx + imx Qmξ̄ = ix̄φ + imx̄

Qmω = h Qmω̄ = h̄

Qmh = iφω + imω Qmh̄ = −iω̄φ − imω̄.

(3.16)

We see that Q2
m = G(φ)+F(m), where F(m) is the flavor group action: F(m)Q = imQ and

F(m)Q̃ = −imQ̃. Note that F(m)V = 0. Hence the deformed BRST operator matches

with undeformed one when it acts on the gauge multiplet: QV = QmV . To prove that the

action remains Qm-exact we notice that

QmΨmatter = QΨmatter − 2imx̄λx − 2imω̄ω

Qm

(
ξ̄x + x̄ξ

)
= 2ix̄φx + 2imx̄x − 2ξ̄ξ.

(3.17)

It follows that

Smatter + Smass = Qm (Ψmatter + Ψmass) , (3.18)

where Ψmass = im(ξ̄x + x̄ξ). Note that it can be obtained from (3.2) by the formal

shift (3.14).

Tilded and untilded chiral multiplets transform in (2.20) and (2.21) independently. We

have put them into for of Dirac spinors to shorten formulae. Also they enter separately

into the Lagrangian. The only term that mixes them is the four dimensional mass (2.8).

If we delete it, we can consider two multiplets independently. In particular, they can have

different two dimensional masses: FQ = imQ and FQ̃ = −im̃Q̃.
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4. Ground states of the model

In this section we describe classical vacua of the model in question as well as certain

deformation of the model. The deformation is needed for the following reason. We are

interested in the non-perturbative corrections to the twisted superpotential. We would

like to think of them as of “small” corrections, even smaller that perturbative ones. It

corresponds to the regime |r| ≫ 0. But in this regime the initial theory does not possess a

Coulomb branch. However we can deform it, introducing an asymmetry between left and

right movers in twisted theory, or, equivalently, between Q and Q̃ in the untwisted one.

The deformed model do have a Coulomb branch which is consistent with r 6= 0. The price

we pay is that we lose three quarters of the supersymmetry.

4.1 Vacua

Consider the full action of the model with NF flavors of the untilded matter and NF̃ flavors

of the tilded one. Recall that their numbers and their masses do not necessarily match.

In principle, even the representations of Q and Q̃ may be independent, and not be dual to

each other. Also we can consider more than two different representations. The action can

be written as follows:

Sfull = Stop + Sgauge + SFI + Smatter + Smass = τF12 + QmΨfull (4.1)

Using the Qm-exactness of this action we take more general expression for the gauge fermion

than (3.2). Namely, let

Ψfull = −χ (iF12 − 2r + 2ixγ12x̄ + tgB) + iψµ∇µλ − iA1η[φ, λ] − iA2m(ξ̄x + x̄ξ)

+ iA3(ξ̄λx + x̄λξ) + (tmh̄ + i∇µx̄γµ)ω + ω̄(tmh − iγµ∇µx),
(4.2)

where A1, A2, A3, tg and tm are arbitrary constants. The vacuum expectation of any

Qm-exact quantity is independent of them. The initial model corresponds to A1 = A2 =

A3 = tg = tm = 1. For the sake of brevity we omit the summation on flavor indices and the

indices themselves. For example 2xγ12x̄ should be read as i
∑NF

f=1 qf,lq̄f,m− i
∑N

F̃

f=1 q̃f,m
¯̃qf,l,

where l,m are color indices.

Let us integrate out auxiliary fields h, h̄ and B. The bosonic part of the action is given

by the following expression:

Sboson =
1

4tg
(iF12 − 2r + 2ixγ12x̄)2 + ∇µφ∇µλ − 1

2tm
(∇µx̄γµ) (γν∇νx)

+ A1[φ, λ]2 − 2A2m
2x̄x − 2A2mx̄φx − 2A3mx̄λx − A3x̄(φλ + λφ)x.

(4.3)

Now we can describe the vacua of the theory. When r = 0 the vacuum is given by the

following equations: x = 0, x̄ = 0, [φ, λ] = 0. The A1-term implies that in this situation

φ and λ are diagonal (as it follows from (2.22) and (2.27) we have to identify φ̄ = λ, as it

would be had we started from Euclidean four dimensional space, or had we performed the

Wick rotation in the torus on which we compactify the theory). The gauge group is broken

down to its maximal torus: U(N) 7→ U(1)N and the theory is in the Coulomb branch.
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However, as we have mentioned in the beginning of this section, when r = 0 the non-

perturbative corrections are not really small. Moreover as we shall see later, this condition

is not compatible with the localization technique. See also [12] for further explanation.

Let us, therefore, study cases when r 6= 0. In components the first term in the boson

part of the action (4.3) is given by the following expression (iF12 − 2r − q̄q + ¯̃qq̃)
2
. We see,

that if r > 0, the vacuum energy is zero if (let us stress that this is only sufficient condition)

NF̃ = N , q̃f,l =
√

2rδf,l and qf,l = 0. If r < 0 then Q and Q̃ are interchanged: NF = N ,

qf,l =
√

2|r|δf,l and q̃f,l = 0. Let us in that follows chose r > 0. We see, that some of

matter multiplets acquire a non-zero vacuum expectation. It follows that if we wish to

have zero vacuum energy, we must put φlm = δl,mal, where al = −m̃l. In particular, if the

mass of Q̃ is zero, it implies φ = 0. The group of the global symmetry of the theory is

U(N)G × U(NF̃ )F̃ ×U(NF )F , where first factor is the global gauge transformation (gauge

transformations at infinity), whereas the rest is the flavor group for Q̃ and Q respectively.

If Q̃ acquires non-zero vevs, this group is broken down to U(N)′ × U(NF )F , where first

factor is diagonal part of the product of gauge group and Q̃ flavor group. The theory is

in the color-flavor locking phase, where it has N separated vacua which are permuted by

the Weyl group of the gauge group, and there is no Coulomb branch. We can also put

NF̃ > N . In this situation the Higgs branch appears, but we still can not find the Coulomb

branch is such a way.

To obtain the Coulomb branch we must eliminate A2 and A3 terms for Q̃. Then non-

zero vevs of Q̃ will be compatible with non-zero vevs of φ and λ. In such a way we lose

three quarters of the supersymmetry. Namely, the action is not invariant any more with

respect to neither Q̃ nor Qµ. Only Q = Q−+Q̄−

2 survives. On the other hand we have no

more such a severe restriction imposed on φ. The only condition is given by A1-term, and

we recover the Coulomb branch. Note that the only terms which break the supersymmetry

are those which contain the components of Q̃.

The topological sector of the deformed model is the same as the topological sector of

the initial model. Since our main assumption is that the F-term is fully defined by the

topological sector, it is natural to expect that twisted superpotential computed for the

deformed model gives the answer for the undeformed one. It would be interesting to check

this statement by the direct computations. However, this is beyond the scope of the present

paper.

4.2 Vortices

Now let us move tg and tm. Consider the limit tg → 0 and tm → 0. (4.3) shows that the

functional integral for the vacuum expectation of an observable localizes on solutions for

following equations:

iF12 + q̃ ¯̃q − A4qq̄ = 2r, ∇z̄
¯̃q = 0, ∇zq = 0 (4.4)

modulo the gauge transformation. Here we used once again the topological character of the

theory and introduced an arbitrary constant A4. We can now consider the limit A4 → 0.

In this limit the first two equations become the two dimensional Bogomol’ny equations.

Their four dimensional analog in this context is the Seiberg-Witten monopole equations.
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The solutions for the two-dimensional Bogomol’ny equations are known as vortices.

Denote the moduli space of vortices as V. Vortices are classified by the vortex number,

which is the first Chern class c1(E). The dimensions of the vortex moduli space with fixed

value k of c1(E) is equal to 2Nk. Denote it by Vk. We have

V =
∞⊕

k=1

Vk, dimVk = 2Nk, Vk = C × Ṽk, (4.5)

where C in the last equality describes the center mass position of k vortices and Ṽk describes

its internal structure. For k = 0 the moduli space consists of a single point Aµ = 0,

q̃f,l =
√

2rδf,l.

The moduli space Vk can be described with the help of a finite dimensional model [13,

11]. The construction is the following. Consider a complex k × k matrix C and another

complex N × k matrix I. One can show that the moduli space is given by the Kähler

quotient

Vk = µ−1(2r)/U(k), µ = [C†, C] + II†. (4.6)

The action of U(k) is Hamiltonian, the corresponding moment map is µ. We have simply

C 7→ gCg−1 and I 7→ gI, g ∈ U(k). Note that the moment can be obtained form the first

line of the Bogomol’ny equations (4.4) by formal replacement Az̄ 7→ C and q̃ 7→ I.

The last equation in (4.4) describes the solutions for the two dimensional Weyl equation

in the vortex background. As it follows from the Atiyah-Singer index theorem, there are

exactly k solutions. To select one of them we need to introduce a vector w belonging

to k-dimensional complex vector space. As in the four dimensional theory (see [27]) the

statistics of this parameter should be fermionic. Therefore w ∈ ΠC
k.

5. Model in Ω-background

5.1 Definition

We will be interested in the partition function of the model in the Coulomb phase. The

vacuum expectations for φ belong to the Cartan subalgebra of the gauge group: φlm =

δl,mal. The partition function can be written as follows: Z(a) = 〈1〉a. However, this

quantity considered “as is” is not useful, since it diverges. Indeed, the theory is Poincaré

invariant in two dimensions. Since “1” is also translation invariant, the full expression is

proportional to the volume of two dimensional space.

To regularize this divergence, we have to spoil the translation invariance. It can be done

by introducing so-called Ω-background in the four dimensional space, and then compactify

theory to two dimensions in this background [15, 24].

The anzatz for the Ω-background is the following:

ds2
4 = GIJdxIdxJ =

(
dx0

)2 −
(
dx3

)2 − gµν (dxµ + V µ
a dxa) (dxν + V ν

a dxa) , (5.1)
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where a = 0, 3 and V µ
a = Ωµν

a xν , where Ωµν
a is a two-dimensional Lorentz rotation matrix.

Denote

V µ =
V µ

0 + V µ
3

2
= Ωµνxν V̄ µ =

V µ
0 − V µ

3

2
= Ω̄µνxν

Ωµν =
Ωµν

0 + Ωµν
3

2
Ω̄µν =

Ωµν
0 − Ωµν

3

2
.

(5.2)

The determinant of this metric is detIJ GIJ = −1. The only non-zero Ricci coefficients are

γa,µν = −γa,νµ = −Ωa,µν . It follows that the metric is flat when Ω and Ω̄ commute. Since

we are in two dimensions, we can introduce two parameters ε and ε̄ defined as follows:

Ωµν = εǫµν and Ω̄µν = ε̄ǫµν .

To see what changes in the Ω-background, consider the following derivative ∇+ =
1
2 (∇0 + ∇3). When the metric is constant, after compactification we have ∇+ = φ. In

the Ω-background one has to replace this derivative by the covariant one, which is given

by 1
2

(
eI
0∇I + eI

3∇I

)
, where eI

a is the vierbein for the metric (5.1). We have: eb
a = δb

a and

eµ
a = −V µ

a . It follows that φ (and, by same arguments, λ) become differential operators:

φ̂ =
1

2

(
eI
0∇I + eI

3∇I

)
= φ − V µ∇µ and λ̂ =

1

2

(
eI
0∇I − eI

3∇I

)
= λ − V̄ µ∇µ. (5.3)

Looking at the equation (2.16) we conclude that the BRST operator in the Ω-background

gets deformed in such a way that it satisfies Q′2 = iφ̂ = iφ− iΩµνx
ν∇µ. Once again using

formulae (2.16) we see that a good candidate for the deformed operator is [23]

Q′ = Q + ΩµνxνQµ. (5.4)

5.2 Deformed action

Now let us focus on the gauge multiplet. Using equations (3.7) and (3.9) we conclude that

Q′Ψ′
gauge = QΨ′

gauge = Sgauge. Thus all changes are caused by the Fayet-Iliopoulos term.

To figure them out we first notice that

Q′ΨFI = 2rB − 2irεxµ∇µλ = QΨFI + 4irελ. (5.5)

However the additional term 4irελ, and therefore, the whole deformed action is not real.

It indicates that some supplementary terms appear. These terms should contain 4iε̄rφ. A

reasonable try is Ψ′
FI = 2rχ + 2rε̄xµψµ. Then

Q′Ψ′
FI = 2rB + 4irελ + 4irε̄φ − 2rεε̄x2(iF12 + B). (5.6)

Now the action is real. Note that the modification of ΨFI can be interpreted as shift

defined by equation (5.3) put into formula (3.2).

An important observation is that additional terms can be interpreted as the following

superspace dependence of the complex parameter (2.25):

τ(x, θ) =
Θ

2π
+ ir

(
1 + 2ε̄

(
ǫµνθµθν + iεx̄2

))
. (5.7)

All modifications are proportional to r, and therefore are absent when r = 0.
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In the Ω-background the supersymmetry is broken. Q′ is the only survived supercharge.

In coordinates (2.23) it takes the following form (here we have restricted it to the subspace

θ = θ̃ = 0):

Q′ = θµ ∂

∂yµ
− iΩµνyν

∂

∂θµ
. (5.8)

If we formally identify θµ = dxµ, then the differential operator (5.8) becomes the Cartan

differential Q′ = d + iV , where V µ = −iεǫµνxν is the vector field for the Lorentz rotation.

The basic property of this operator is that it annihilates the superspace dependent complex

parameter:

Q′τ(y, θ) = 0. (5.9)

Now we can establish a proposal for the twisted superpotential. To this extent we

compute the vacuum expectation of “1” in the Coulomb phase. We can compute it in two

steps: first we integrate out all high-energy modes, and then we integrate the rest. In the

Coulomb phase the only massless modes are those which belong to the Cartan subalgebra,

that is, the diagonal elements of (2.1). They can be packaged to (2.22) and (2.27). Thus

we can write (“c.c.” stands for complex conjugated)

〈1〉a =

∫
DΣDΣ̄ ei

R

d2yd2θ 1
2πi

W (Σ(y,θ),τ(y,θ))+c.c

= ei
R

d2yd2θ 1
2πi

W (a,τ(y,θ))+c.c. = e
i
ε
W (a,τ,−iε)+c.c. =

∣∣∣e
i
ε
W (a,τ,−iε)

∣∣∣
2
.

(5.10)

The function W (a, τ) in the righthand side consists of three parts: classical, which is given

by equation (2.30), the perturbative part Wpert, which is entirely defined by the 1-loop

expression, and the non-perturbative part Wvort, due to vortices. In that follows we rotate

the parameter of the Ω-background in the complex plane: ε 7→ iε.

6. Computation of twisted superpotential

6.1 Perturbative part

Let us first compute the perturbative contribution to the twisted superpotential. When

Ω-background is absent, the perturbative contribution to the partition function is trivial,

since the theory is topological. Fermionic determinant compensates the bosonic one. In

the presence of Ω-background things change [15].

The off-diagonal part of the vector multiplet gains mass thanks to the non-zero vacuum

expectation of φ. It happens thanks to terms of form [φ, V ]lm = (al − am)Vlm. In the Ω-

background φ becomes differential operator. In the complex coordinates (2.9) shift (5.3)

can be rewritten as follows: φ̂ = φ − ε(z∂z − z̄∂z̄). Hence the Higgs mass becomes a

differential operator as well:

[φ̂, V ]lm = (al − am − ε (z∂z − z̄∂z̄))Vlm. (6.1)

To find the perturbative contribution to the partition function we inspect the Yukawa

interactions as well as gauge coupling to the Higgs field in the full action (4.1). Let us
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represent the fields of the gauge multiplet as follows Vlm =
∑∞

ij vlm,ijz
iz̄j e−|z|. Here the

summation on i, j takes into account the Lorentz properties of the component fields of

vector multiplet. For example for scalar fields the summation is understood as
∑∞

i,j =∑∞
i=0

∑∞
j=0 whereas for Az it is

∑∞
i,j =

∑∞
i=1

∑∞
j=0, and so on. The relevant part of the

boson-fermion determinant ratio is

Zgauge
pert =

∣∣∣e
1
ε
W gauge

pert (a,ε)
∣∣∣
2

=

∣∣∣∣∣∣

N∏

l 6=m

∞∏

i,j=0

al − am − ε(i − j)

al − am − ε(i − j + 1)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

N∏

l 6=m

∞∏

i=0

(al − am + iε)

∣∣∣∣∣∣

2

.

(6.2)

Same reasoning for the matter multiplets leads to the following contribution of the Q and

Q̃ (only ω-terms are relevant).

Zmatter
pert =

∣∣∣e
1
ε
Wmatter

pert (a,ε)
∣∣∣
2

=

∣∣∣∣∣

N∏

l=1

∞∏

i=0

(
al + m − ε

(
i +

1

2

))∣∣∣∣∣

2

. (6.3)

These products should be regularized. The standard way is to use the Schwinger proper

time regularization. Namely we exploit the following relation (here Λ is a regularizer, the

dynamically generated scale):

Reg(eia) ≡ d

ds

∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞

0

dt

t
ts eita = ln

∣∣∣
a

Λ

∣∣∣ . (6.4)

It follows that Zgauge
pert =

∣∣∣e−
PN

l6=m γε(al−am)
∣∣∣
2
, where

γε(x) = Reg

(
eix

eiε −1

)
=

d

ds

∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞

0

dt

t
ts

eitx

eitε −1
=

∞∑

g=0

εg−1γg(x) (6.5)

Operation Reg is linear, which implies that γε(x) satisfies the following “first order” dif-

ference equation:

γε(x + ε) − γε(x) = Reg(eix) = ln
∣∣∣
x

Λ

∣∣∣ . (6.6)

This equation allows us to determine this function up to an additive constant. We have

γε(x) =
x

ε

(
ln

∣∣∣
x

Λ

∣∣∣ − 1
)
− 1

2
ln

∣∣∣
x

Λ

∣∣∣ +

∞∑

g=1

( ε

x

)2g−1 B2g

2g(2g − 1)
, (6.7)

where B2g are Bernoulli numbers. The four dimensional analog of this function is γε1,ε2
(x)

defined in [24, appendix A].

This expansion shows that W gauge
pert = O(ε). At the same way one can show that

Wmatter
pert =

NF∑

f=1

N∑

l=1

(al +mf )

(
ln

∣∣∣∣
al + mf

Λ

∣∣∣∣−1

)
−

N
F̃∑

f=1

N∑

l=1

(al +m̃f )

(
ln

∣∣∣∣
al + m̃f

Λ

∣∣∣∣−1

)
+O(ε).

(6.8)

This form of the perturbative par of thr twisted superpotential implies the renormalization

group equation (2.31).
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6.2 Non-perturbative part

In order to compute vortex contribution to the twisted superpotential we use the finite

dimensional model for the vortex moduli space. It the Ω-background the deformed BRST

operator satisfies:

(Q′
m)

2
= G(φ) + F(m) + L(ε), (6.9)

where the last term is the Lorentz rotation on angle ε. The finite dimensional version of

equations (2.17), (2.20) and (2.21) properly deformed is the following:

Q′
mC = ψC Q′

mψC = i[φ,C] − iεC

Q′
mI = ψI Q′

mψI = iφI − iIa − iε

2
I

Q′
mχ = B Q′

mB = i[φ, χ]

Q′
mλ = η Q′

mη = i[φ, λ]

Q′
mν = w Q′

mw = iφν + imν − iε

2
ν.

(6.10)

Here ν is fermion and w is boson. The weight of the Lorentz rotations for C, I and w

can be explained as follows. w classifies solutions for the Dirac equation for q = −x− and

therefore it transforms under Lorentz rotations as lower component of a spinor, that is by

multiplying to − iε
2 . The remark below (4.6) explains the weights for C and I (recall that

z̄ 7→ e−iε z̄).

Let us now construct the finite dimensional version for the full action Sfull. Its value on

a vortex solution is given by the first term and equals 2πiτk. The rest is the Mathai-Quillen

representative of the equivariant Euler class for the Dirac equation solutions bundle (Dirac

bundle for short) over the vortex moduli space, which is defined by equations (4.6). The

finite action is given by Sfinite = Q′
mΨfinite, where

Ψfinite = χ(µ − 2r) + ψC [λ,C] + ψ̄C [λ,C†] + ψIλI − I†[λ, ψ̄I ] + (ν̄w + w̄ν) . (6.11)

First term enforces the integral to localize on submanifold µ = 2r whereas the rest describes

the action of U(k). The last term is due to solutions for the Weyl equation in vortex

background.

Integrating out boson and fermion matrices we obtain the following expression:

e
1
ε
Wvort(a,τ,ε) = 1 +

∞∑

k=1

e2πiτ Zk(a, ε), (6.12)

where

Zk(a, ε) =
1

k!

1

εk

∫ k∏

i=1

dφi

2πi
e2ir

Pk
i=1 φi

k∏

i6=j

φi − φj

φi − φj − ε

k∏

i=1

N∏

l=1

φi + ml − ε/2

φi − al − ε/2
. (6.13)

More elegant way to get the same result is to apply once again the localization technique,

now to the finite dimensional space Vk. The integral for Zk(a, ε) can be computed with the

help of the Duistermaat-Heckman formula. The weights for the maximal torus action of
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U(N)G×U(N)F×U(1)′L can be obtained directly from (6.10). Details of these computations

can be found in [9, 17, 18, 23, 27].

The integral (6.13) can be computed by residues. To do this we move φi to the complex

plane. Like in four dimensional case ε gains positive imaginary part: ε 7→ ε + i0. The

exponent in the integrand indicates that we have to close the contour of integration in the

upper halfplane, since r > 0. All poles of the integrand are in the upper halfplane. It seems

that when r < 0 the integral (6.13) vanishes, since we close contour in the lower halfplane.

However, when r < 0 the roles of Q̃ and Q are interchanged. Also the sign between the field

strength and the matter fields in the Bogomol’ny equation (4.4) is changed, which implies

that now C should be identifies with Az. Therefore we replace ε 7→ −ε in equation (6.10).

This implies that all residues now are in the lower halfplane and again captured by the

contour integration.

6.3 Residue handling

Let us explain the manipulation with residues for the integral (6.13). In the H-case the

poles of similar integrals are enumerated by colored Young tableaux [17, 23]. Relevant

formulae can be obtained in the context of Hilbert schemes of points on surfaces [20 – 22].

In our case the classification of residues can be obtained by similar approach, though more

simple.

The residues are classified by N icicles of heights ~k = {k1, . . . , kN}. The total height of

all icicles is |~k| = k1+· · ·+kN = k. The residues which correspond to given configuration of

icicles are in points φ⋆
i = al + (1

2 + il)ε, where il = 0, 1, . . . , kl − 1. For such a configuration

we can put forward the following formula (which can be proved by induction):

k∑

i,j=1

(
eφ⋆

i −φ⋆
j − eφ⋆

i −φ⋆
j−ε

)
−

N∑

l=1

k∑

i=1

eφ⋆
i −al−ε/2 = −

N∑

l,m=1

kl∑

il=1

eal−am+(kl−km−il)ε . (6.14)

Now we apply to this identity Schwinger regularizing procedure Reg defined in equa-

tion (6.4), and transform the sum of exponents to the product of their arguments:∑
α ewα 7→ ∏

α wα. Number of possible ordering of φi is equal to k! which compensates 1
k!

factor in the integral (6.13). The exponents whose argumet depends only on ε and not on

al lead to the combinatorial factor which is equal to the number of ways to distribute k

residues between N icicles.

The final expression for the integral (6.13) is the following:

Zk(a, ε) =
∑

~k:|~k|=k

1

~k!ε|~k|
e2ir~k·~a

∏N
f=1

∏N
p=1

∏kp

ip=1(ap + mf + ipε)
∏N

l 6=m

∏kl

il=1 (al − am + (kl − km − il)ε)
, (6.15)

where ~k · ~a =
∑k

i=1 φ⋆
i =

∑N
l=1

(
alkl +

k2
l

2 ε
)

and ~k! =
∏N

l=1(kl!).

Formula (6.12) allows us to relate this quantity to

Wvort(a, ε) =

∞∑

g=0

εgW vort
g (a). (6.16)
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The leading term of this series, that is, W vort
0 (a), is conjectured to be the twisted super-

potential introduced in (2.29).

7. Concluding remarks

7.1 About C-case

We have shown how the localization technique can be applied to study of two dimensional

topological models. Morally speaking we have adapted the instanton counting story [23]

to the two dimensional case. We have founded a lot of similarities. However some features

of four dimensional theory can not be reproduced. It may be caused by low-dimensional

effects (such as full breaking of the R-symmetry group, instead of partial breaking in four

dimensions), or may point to some pathological obstacles.

Recall that in the H-case the rational factors for the integrand in formula (6.13) can be

obtained by applying the Schwinger regularization (6.4) to the equivariant Chern character

of the Dirac bundle E (see for details [23, 27, 28]).

If it were true in the C-case, then the Chern character for the Dirac bundle for adjoint

representation of the gauge group would be equal, roughly speaking, to the lefthand side

of (6.14). The moduli space data (B and I) can be combined to linear map acting as

follows:

V ⊗ S− ⊕ W
B⊕I−−−−→ V ⊗ L,

where V = C
k, W = C

N , S− = L = C. V is acted on by U(k), the space W is acted on

by U(N)G. S− is the space of Dirac spinors with negative chirality and L is a fiber of the

determinant bundle. In the H-case similar construction was a complex, but now since we

have only one such map it is meaningless to call it so.

Consider an element of the product group torus t ∈ TU(k) × TU(N)G
× TU(1)L

. The

equivariant Chern character can be computed as follows:

Cht(E) = TrE(t) = TrW (t) + TrV (t)
(
TrS−(t) − TrL(t)

)
=

N∑

l=1

eal −(eε −1) e−ε/2
k∑

i=1

eφi .

(7.1)

The equivariant index of the Dirac operator is given by the equivariant analog of the

Atiyah-Singer theorem:

Indfund
t ∇ =

∫

C

Cht(E)Tdt(C), (7.2)

where Tdt(C) = ε
eε −1 is the equivariant Todd class for C. The integral can be computed

equivariantly, the moment map is given by µ = ε|z|2. Then for the fundamental and adjoint
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representations of U(N)G we obtain

Indfund
t ∇ =

Cht(E)

eε −1
=

∑N
l=1 eal

eε −1
− e−ε/2

k∑

i=1

eφi ,

Indadj
t ∇ =

∫

C

Cht(E∗ ⊗ E)Tdt(C) =

∫

C

Cht(E∗)Cht(E)Tdt(C)

=

∑N
l,m=1 eal−am

eε −1
−

N∑

l=1

k∑

i=1

eφi−al−ε/2−
k∑

i,j=1

eφi−φj(1−e−ε)+
N∑

l=1

k∑

i=1

eal−φi−ε/2 .

(7.3)

We observe now that the first term (which contains an infinite number of summands)

is converted by the regularization procedure (6.4) to the perturbative corrections to the

partition function which are given by formulae (6.3) and (6.2). The rest of terms (but the

last sum in the last line) are converted to the integrand of (6.13).

The last term does not have its counterpart in the expression for the partition function.

Also we can not reproduce in such a way the Q̃-contribution to the perturbative part of

the partition function, whose leading term is given by the second sum in (6.8). One of

possible explanation of such a behavior is that in the C-case, in opposition to the H-case,

the moduli space (4.6) describes solutions for fields Aµ and q̃ and not for Aµ solo.

Another problem we meet is the absence of the analog of the Seiberg-Witten theory

in two dimensions. Recall that in the H-case the prepotential can be expanded as follows:

F(a, ~) =
∑∞

g=0 ~
2gFg(a), where ~ = ε1 = −ε2. The leading term of this expansion,

F0(a), which is known as Seiberg-Witten prepotential, can be defined through the cycles

of an algebraic curve [25, 26]. This prescription appears naturally in the thermodynamical

(ε1, ε2 → 0) limit in the exact expressions analogous to (6.13), as it was shown by Nekrasov

and Okounkov. See for details [24, 27, 28].

One can perform similar manipulations in C-case as well. If the Nekrasov-Okounkov

approach is valid, then in the limit ε → 0 the sum (6.12) is dominated by a single term

with k ∼ 1
ε . Introduce the vortex density normalized in such a way to remain finite in the

thermodynamical limit: ρ(x) = ε
∑k

i=1 δ(x−φi). The ktuple integral (6.13) (and therefore

the whole vortex partition function (6.12)) can be approximated by a path integral

Z ∼ Z 1
ε
∼

∫
Dρ e−

1
ε
(H[ρ]+O(ε)), (7.4)

where the Hamiltonian is given by

H[ρ] = −−
∫

dxdy
ρ(x)ρ(y)

x − y
−

N∑

f=1

∫
dxρ(x) ln |x+mf |+

N∑

l=1

∫
dxρ(x) ln |x−al|−2ir

∫
dxρ(x)x.

(7.5)

The first term vanished for symmetry reason, and the line of arguments which lead to the

C-analog of the Seiberg-Witten theory fails, for it is based on the saddle point approxi-

mation for the path integral (7.4). It follows that the F-term contribution to the effective

action (2.29), which is defined by the twisted superpotential W0(a) can not be reproduced

by a sort of cycle computation.
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7.2 About O-case

Let us finally say a word about the eight dimensional theory. The partition function of

the model in the Ω-background will be localized onto the moduli space of the generalized

instantons [17]. Presumably moduli space of such instantons has the finite dimensional

realization which is given by a straightforward generalization of (4.6) and the ADHM

construction [2, 8, 10].

Then corresponding finite dimensional integrals for the partition function will have

a similar form as corresponding integral which appear in Witten index computation per-

formed in [17]. In a manner of speaking, modulo some technicalities, one can say that

Witten index computation is “dual” to the instanton counting scheme. Indeed, in [17]

the remaining integration in the counterpart of (6.13) is taken over the maximal torus of

the group of rigid gauge transformations, i.e. the gauge transformation at infinity, whereas

while doing the generalized instanton counting the remaining integration is to be taken over

the dual (in the sense of [8]) group. Recall that in the C-case it is U(k). This dual group is

all what remains from the whole gauge group (which consists of all gauge transformations

with fixed value at infinity) in the finite dimensional model for the moduli space.

Apart from aesthetic wish to complete the C–H–O story, there is a purely pragmatic

motivation to study eight dimensional model. Recall that the need to have the Fayet-

Iliopoulos term in the C-case forces us to focus on the U(N) gauge group, which is the

group of isometries of a complex vector space. The ADHM construction is known only

for classical semi-simple groups, such as SU(N), SO(N) and Sp(N). This triad is directly

related to the quaternion vector space isometries. It is plausible to believe that the moduli

space of eight dimensional generalized instantons is related in some sense to isometries of

an octonion vector space. The exceptional groups (E, F and G root systems) are closely

related to such isometries [3]. Thus the finite dimensional construction should be valid

for all semi-simple groups. We believe that the construction of O-instantons can shed

some light to the instanton counting in four dimensions, that is, to the construction of

Seiberg-Witten prepotential.
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